RPPH Blog Books / Libros
Generación de modelo de control predictivo usando Matlab
PDF (Spanish)

Keywords

competitiveness

diagnostic indicators
population
economical geographical location
potential
resources.

How to Cite

Villao Vera, R. A. (2017). Generación de modelo de control predictivo usando Matlab. Revista Publicando, 4(13 (2), 995-1007. https://revistapublicando.org/revista/index.php/crv/article/view/1227

Abstract

Los Modelos de Control Predictivo (MCP) son alternativas prometedoras en la gestión eficiente de la energí­a y los recursos en las edificaciones. Crear un modelo de construcción preciso que sea lo suficientemente simple como para permitir que el problema de MCP resultante sea manejable es una tarea desafiante pero crucial en el desarrollo del control.

En este artí­culo muestra el Modelado de Resistencia-Capacitancia para Edificios (MRCE) en Matlab Toolbox que facilita el modelado fí­sico de edificios. Toolbox proporciona un medio para la generación rápida de modelos de resistencia (capacitancia) lineal a partir de datos básicos de geometrí­a de edificios, construcción y sistemas. Además, admite la generación de los correspondientes costos y restricciones potencialmente variables en el tiempo. Toolbox se basa en principios de modelado previamente validados. En un estudio de caso, se generó automáticamente un modelo MRCE a partir de un archivo de datos de entrada EnergyPlus y se compararon sus capacidades predictivas con el modelo EnergyPlus. Los análisis energéticos en régimen estacionario en Matlab son tan precisos como los resultados generados en las herramientas computacionales destinadas exclusivamente a este propósito. La herramienta computacional Matlab se consolida en cada nueva versión como una plataforma más completa y óptima para el análisis ingenierí­a y de matemáticas aplicadas.

PDF (Spanish)

References

Arun Kumar, P., Geetha, M., Chandran, K. R., & Sanjeevikumar, P. (2018) PEM fuel cell system identification and control. Vol. 435. Lecture Notes in Electrical Engineering (pp. 449-457).

Clarke, R. (2017) Introduction: Cancer gene networks. Vol. 1513. Methods in Molecular Biology (pp. 1-9).

Lee, Y. M., Horesh, R., & Liberti, L. (2016). Simulation and optimization of energy efficient operation of HVAC system as demand response with distributed energy resources. Paper presented at the Proceedings - Winter Simulation Conference.

Madsen, A. L., Sí¸ndberg-Jeppesen, N., Sayed, M. S., Peschl, M., & Lohse, N. (2017) Applying object-oriented bayesian networks for smart diagnosis and health monitoring at both component and factory level. Vol. 10351 LNCS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 132-141).

Mei, Y., Li, X., & Qi, Y. (2016). A model predictive control method for three-level bi-directional DC-DC converter in renewable generation system. Paper presented at the 2015 18th International Conference on Electrical Machines and Systems, ICEMS 2015.

Menon, R. P., Maréchal, F., & Paolone, M. (2016). Intra-day electro-thermal model predictive control for polygeneration systems in microgrids. Energy, 104, 308-319. doi:10.1016/j.energy.2016.03.081

Reynolds, J., Rezgui, Y., & Hippolyte, J. L. (2017). Upscaling energy control from building to districts: Current limitations and future perspectives. Sustainable Cities and Society, 35, 816-829. doi:10.1016/j.scs.2017.05.012

Reynolds, J., Rezgui, Y., Kwan, A., & Piriou, S. (2018). A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control. Energy, 151, 729-739. doi:10.1016/j.energy.2018.03.113

Silva, J. M. F., Godina, R., Rodrigues, E. M. G., Pouresmaeil, E., & Catalao, J. P. S. (2017). Residential MPC controller performance in a household with PV microgeneration. Paper presented at the 2017 IEEE Manchester PowerTech, Powertech 2017.

Strzalka, R., Strzalka, A., Kalina, J., & Eicker, U. (2017). Effective system integration of decentralised biomass cogeneration plants. Paper presented at the European Biomass Conference and Exhibition Proceedings.

Wanjiru, E. M., Sichilalu, S. M., & Xia, X. (2017). Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems. Applied Energy, 204, 1333-1346. doi:10.1016/j.apenergy.2017.05.033

Weeratunge, H., Narsilio, G., de Hoog, J., Dunstall, S., & Halgamuge, S. (2018). Model predictive control for a solar assisted ground source heat pump system. Energy, 152, 974-984. doi:10.1016/j.energy.2018.03.079

Wu, C., Gu, W., Jiang, P., Li, Z., Cai, H., & Li, B. (2017). Combined Economic Dispatch Considering the Time-Delay of a District Heating Network and Multi-Regional Indoor Temperature Control. IEEE Transactions on Sustainable Energy. doi:10.1109/TSTE.2017.2718031

Xue, Y., Todd, M., Ula, S., Barth, M. J., & Martinez-Morales, A. A. (2016). A comparison between two MPC algorithms for demand charge reduction in a real-world microgrid system. Paper presented at the Conference Record of the IEEE Photovoltaic Specialists Conference.

Xypolytou, E., Meisel, M., & Sauter, T. (2017). Short-term electricity consumption forecast with artificial neural networks - A case study of office buildings. Paper presented at the 2017 IEEE Manchester PowerTech, Powertech 2017.

Zhang, X., Wang, R., & Bao, J. (2018). A novel distributed economic model predictive control approach for building air-conditioning systems in microgrids. Mathematics, 6(4). doi:10.3390/math6040060

Zhao, L. P., Carlsson, A., Larsson, H. E., Forsander, G., Ivarsson, S. A., Kockum, I., . . . Lernmark, í…. (2017). Building and validating a prediction model for paediatric type 1 diabetes risk using next generation targeted sequencing of class II HLA genes. Diabetes/Metabolism Research and Reviews, 33(8). doi:10.1002/dmrr.2921

Zhao, Y., Lu, Y., Yan, C., & Wang, S. (2015). MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages. Energy and Buildings, 86, 415-426. doi:10.1016/j.enbuild.2014.10.019

Zhao, Y., Ye, L., Pinson, P., Tang, Y., & Lu, P. (2018). Correlation-Constrained and Sparsity-Controlled Vector Autoregressive Model for Spatio-Temporal Wind Power Forecasting. IEEE Transactions on Power Systems. doi:10.1109/TPWRS.2018.2794450

You are free to:

Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Downloads

Download data is not yet available.