Resumen
A wide introduction of computer technology in all spheres of activity of organizations and enterprises creates the prerequisites for an active use of information technologies to implement the statistical analysis.
This article is devoted to the use of information technologies in statistical methods on the example of price analysis for polymer products. The statistical analysis was performed using the "Statistica" software on the basis of available data.
In this work they used the method of exponential smoothing and neural network methods of system analysis. On the basis of monthly data, during the period from January 2012 to December 2016, the production volume prediction was developed until December 2017.
Comparing the results of two methods application - neural networks and exponential smoothing, it follows that both methods predict the trend of production volume growth, and their greatest volume will be in December 2017. However, in the course of prediction by the method of exponential smoothing, the model showed that in December 2017 the production volume will make just over 125 thousand tons, which is 5 thousand tons more than the selected neural network model showed. At the same time, during the exponential smoothing method, a larger error (5.49%) was observed on the cross-check, than within the model obtained during the application of neural networks (2.47%).
Referencias
Afanasyev V.N., Yuzbashev M.M. Time series analysis and forecasting. Moscow: Finance and Statistics, INFRA-M, 2010. - 320 p.
Borovikov V.P. Forecasting by "STATISTICA" system in Windows environment. Fundamentals of theory and intensive computer practice: textbook / V.P. Borovikov, G.I. Ivchenko. - Moscow: Finance and Statistics, 2000. - 384 p.: ill.
Eliseeva I.I. Statistics: Textbook / I.I. Eliseeva [and others]; Ed. by I.I. Eliseeva. - Moscow: Prospekt, 2010. - 448 p.
Gareeva G.A., Grigorieva D.R., Ishimova A.Yu. The application of computer technologies in statistical methods on the example of the analysis of prices for polymer products // Scientific and Technical Herald of the Volga Region. â„–1 2017. - Kazan, 2017. - pp. 77-80.
Kruglov V.V. Fuzzy logic and neural networks. Kruglov V.V., M.I. Dly, R.Yu. Golunov. - Moscow: FIZMATLIT, 2001. - 221 p.
Orlova I.V. Economic and mathematical methods and models: computer modeling: Textbook / I.V. Orlova, V.A. Polovnikov. - M.: University textbook, 2007. - 365 p.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar — remezclar, transformar y construir a partir del material
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la lamisma licencia del original.