Resumen
A pesar de que la terminación de los proyectos de construcción tiene un impacto positivo directo en el crecimiento de las economías nacionales y locales, así como el bienestar de los seres humanos, los proyectos de construcción, especialmente en las áreas urbanas, generan molestias ambientales graves para los residentes adyacentes y tienen impactos adversos no intencionales en su entorno. Los impactos adversos causados por la construcción en las comunidades vecinas se conocen como costos sociales. Este estudio tiene como objetivo presentar una visión general del estado de la técnica de los costos sociales en la industria de la construcción en términos de cuantificación.
Referencias
Aigbavboa, C. O., Oke, A. E., & Thole, Y. L. (2017). Sustainability of Tilt-up Construction Method. Procedia Manufacturing, 7, 518-522. doi:10.1016/j.promfg.2016.12.064
Balaban, O. (2012). The negative effects of construction boom on urban planning and environment in Turkey: Unraveling the role of the public sector. Habitat International, 36(1), 26-35. doi:10.1016/j.habitatint.2011.05.003
Benzaquen, J. (2017). Total factor productivity of the Latin-American industry: large shipbuilding in Peru. International Journal of Productivity and Performance Management, 66(2), 231-250. doi:10.1108/IJPPM-11-2015-0171
Bottero, M., & Mondini, G. (2017) Assessing socio-economic sustainability of urban regeneration programs: An integrated approach. Green Energy and Technology (pp. 165-184).
Brooks, A., & Rich, H. (2016). Sustainable construction and socio-technical transitions in London's mega-projects. Geographical Journal, 182(4), 395-405. doi:10.1111/geoj.12167
Cox, B. C., Howard, I. L., & Middleton, A. (2016). Case study of high-traffic in-place recycling on U.S. highway 49: Multiyear performance assessment. Journal of Transportation Engineering, 142(12). doi:10.1061/(ASCE)TE.1943-5436.0000900
Dey, S., Manikanda Prabhu, S., & Siva Subramani, G. (2017). Identification and mitigation of factors affecting human resource productivity in construction. International Journal of Civil Engineering and Technology, 8(1), 123-131.
Edwards, D. J., Owusu-Manu, D. G., Baiden, B., Badu, E., & Love, P. E. (2017). Financial distress and highway infrastructure delays. Journal of Engineering, Design and Technology, 15(1), 118-132. doi:10.1108/JEDT-02-2016-0006
Ioannidou, D., Zerbi, S., García de Soto, B., & Habert, G. (2017). Where does the money go? Economic flow analysis of construction projects. Building Research and Information, 1-19. doi:10.1080/09613218.2017.1294419
IÅŸik, Z., & AladaÄŸ, H. (2016). A fuzzy AHP model to assess sustainable performance of the construction industry from urban regeneration perspective. Journal of Civil Engineering and Management, 1-11. doi:10.3846/13923730.2016.1210219
Koo, C., Hong, T., Yoon, J., & Jeong, K. (2016). Zoning-Based Vertical Transportation Optimization for Workers at Peak Time in a Skyscraper Construction. Computer-Aided Civil and Infrastructure Engineering, 31(11), 826-845. doi:10.1111/mice.12220
Machfudiyanto, R. A., Latief, Y., Arifuddin, R., & Yogiswara, Y. (2017). Identification of Safety Culture Dimensions Based on the Implementation of OSH Management System in Construction Company. Paper presented at the Procedia Engineering.
Matthews, J. C., Allouche, E. N., & Sterling, R. L. (2015). Social cost impact assessment of pipeline infrastructure projects. Environmental Impact Assessment Review, 50, 196-202. doi:http://dx.doi.org/10.1016/j.eiar.2014.10.001
Noel, L., Brodie, J. F., Kempton, W., Archer, C. L., & Budischak, C. (2017). Cost minimization of generation, storage, and new loads, comparing costs with and without externalities. Applied Energy, 189, 110-121. doi:10.1016/j.apenergy.2016.12.060
Phelan, A., Dawes, L., Costanza, R., & Kubiszewski, I. (2017). Evaluation of social externalities in regional communities affected by coal seam gas projects: A case study from Southeast Queensland. Ecological Economics, 131, 300-311. doi:http://dx.doi.org/10.1016/j.ecolecon.2016.09.010
Vyas, G. S., & Jha, K. N. (2017). Benchmarking green building attributes to achieve cost effectiveness using a data envelopment analysis. Sustainable Cities and Society, 28, 127-134. doi:10.1016/j.scs.2016.08.028
Wang, Y., Han, Q., de Vries, B., & Zuo, J. (2016). How the public reacts to social impacts in construction projects? A structural equation modeling study. International Journal of Project Management, 34(8), 1433-1448. doi:http://dx.doi.org/10.1016/j.ijproman.2016.07.008
Zheng, H. (2017) The bi-level optimization research for time-cost-quality-environment trade-off scheduling problem and its application to a construction project. Vol. 502. Advances in Intelligent Systems and Computing (pp. 745-753).
Zheng, H., & Zhong, L. (2017) Discrete time-cost-environment trade-off problem and its application to a large-scale construction project. Vol. 502. Advances in Intelligent Systems and Computing (pp. 1375-1382).
Zhou, R. (2016). Optimization and study of allocation of drill and blast excavation equipment for high-speed railway tunnels. Journal of Railway Engineering Society, 33(12), 82-87.
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar — remezclar, transformar y construir a partir del material
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la lamisma licencia del original.