RPPH Blog Books / Libros
Comparison of Methods for classifying data for division into groups when learning English
PDF (Inglés)

Palabras clave

Desempleo
Pymes
empresas familiares

Cómo citar

Rafailovna Baranova, A., & Irikovna Kalimullina, K. (2017). Comparison of Methods for classifying data for division into groups when learning English. Revista Publicando, 4(13 (2), 563-573. https://revistapublicando.org/revista/index.php/crv/article/view/916

Resumen

The article deals with the possibility of applying methods of data analysis, in particular data classification, with the aim of dividing the students into groups when learning English. Purpose of the research is to compare methods for classifying data such as a method of k-nearest neighbors, and decision tree. It is necessary to define what the optimality criterion is and to compare models based on these methods. The result of the research detects two models, allowing the input data to divide students into groups to study the English language, and an analysis of the feasibility of their application.

PDF (Inglés)

Referencias

Beginner”™s Guide to Decision Trees for Supervised Machine Learning. – URL: https://www.quantstart.com/articles/Beginners-Guide-to-Decision-Trees-for-Supervised-Machine-Learning (the date of access: 20.09.2017).

Cover T. M., Hart P. E. Nearest neighbor pattern classification / T. M. Cover, P.E. Hart, IEEE Transactions on Information Theory 13, 1967, pp. 21–27.

CrossTable. Cross Tabulation With Tests For Factor Independence – URL: https://www.rdocumentation.org/packages/gmodels/versions/2.16.2/topics/CrossTablehttps://www.rdocumentation.org/packages/gmodels/versions/2.16.2/topics/CrossTable (the date of access: 18.09.2017).

Kashina O. A. Data analysis in the environment R / О. Ð. Kashina – URL: https://edu.kpfu.ru/course/view.php?id=833 (the date of access: 5.10.2017).

K-Nearest Neighbors. – URL: http://www.machinelearning.ru/wiki/index.php?title=KNN (the date of access: 10.10.2017).

Lecture 5: Data analysis problems. Classification and clustering. – URL: http://www.intuit.ru/studies/courses/6/6/lecture/166 (the date of access: 10.09.2017).

Lecture 9: Methods of classification and prediction. Decision trees. – URL: http://www.intuit.ru/studies/courses/6/6/lecture/174 (the date of access: 3.10.2017).

Maze Generation: Recursive Division. – URL: http://weblog.jamisbuck.org/2011/1/12/maze-generation-recursive-division-algorithm (the date of access: 19.10.2017).

Predictive modeling, supervised machine learning, and pattern classification. – URL: https://sebastianraschka.com/Articles/2014_intro_supervised_learning.html (the date of access: 11.10.2017).

Starkweather J. Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing prediction models. / J. Starkweather – URL: http://it.unt.edu/sites/default/files/crossvalidation1_jds_may2011.pdf (the date of access: 6.10.2017).

Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar — remezclar, transformar y construir a partir del material
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia

Bajo los siguientes términos:

Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.

NoComercial — Usted no puede hacer uso del material con propósitos comerciales.

CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la lamisma licencia del original.

Downloads

Download data is not yet available.