Abstract
– La industria del jean requiere una gran cantidad de agua para su producción, generando una gran cantidad de aguas residuales. En promedio, el impacto ambiental de estos efluentes líquidos es alto, debido principalmente a la gran variedad de materia prima, reactivos y sustancias químicas toxicas utilizadas en el proceso.
La biofiltración es una tecnología utilizada en el tratamiento de aguas residuales, esta consiste en el uso de materiales biodegradables como filtro con la finalidad de depurar efluentes provenientes de diferentes actividades, entre ellas, la producción textil.
El presente trabajo pretende verificar la eficiencia de depuración de los siguientes parámetros: Demanda Biológica de Oxigeno DBO5, Demanda Química de Oxigeno DQO, Solidos Totales ST y Biodegradabilidad; mediante la utilización de un biofiltro vertical construido a base de una cama de turba, arena de rio lavada y piedra pómez.
Si bien existe literatura variada sobre biofiltros en la industria textil, no existe investigación específica acerca de filtración y tratamiento de aguas residuales provenientes del lavado de jeans.
Para este efecto, se realizó el monitoreo del biofiltro durante 36 días, con análisis continuos de los parámetros antes mencionados. Al final, se obtuvo una eficiencia del DBO5 de 75.27% y del DQO de 79.69%, una relación de biodegradabilidad DBO5/DQO de 0.78, y también, una reducción de solidos totales ST del 57.33%, sugiriendo la posibilidad de utilizar este biofiltro.
References
S. Shakoor and A. Nasar, “Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent,” J. Taiwan Inst. Chem. Eng., vol. 66, pp. 154–163, 2016.
L. Chen, L. Wang, X. Wu, and X. Ding, “A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry,” J. Clean. Prod., vol. 143, pp. 1137–1143, 2017.
E. Ozturk, H. Koseoglu, M. Karaboyaci, N. O. Yigit, U. Yetis, and M. Kitis, “Minimization of water and chemical use in a cotton/polyester fabric dyeing textile mill,” J. Clean. Prod., vol. 130, pp. 92–102, 2015.
A. Yurtsever, í–. í‡Ä±nar, and E. Sahinkaya, “Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors,” J. Memb. Sci., vol. 511, pp. 228–237, 2016.
S. E. Subramani and N. Thinakaran, “Isotherm, kinetic and thermodynamic studies on the adsorption behavior of textile dyes onto chitosan,” Process Saf. Environ. Prot., 2016.
E. Sahinkaya, A. Yurtsever, and í–. í‡Ä±nar, “Treatment of textile industry wastewater using dynamic membrane bioreactor: Impact of intermittent aeration on process performance,” Sep. Purif. Technol., vol. 174, pp. 445–454, 2017.
A. Yurtsever, B. Calimlioglu, and E. Sahinkaya, “Impact of SRT on the Efficiency and Microbial Community of Sequential Anaerobic and Aerobic Membrane Bioreactors for the Treatment of Textile Industry Wastewater,” Chem. Eng. J., vol. 314, pp. 378–387, 2016.
M. Solís, J. L. Gil, A. Solís, H. I. Pérez, N. Manjarrez, and M. Perdomo, “El proceso de sedimentación como una aplicación sencilla para reducir contaminantes en efluentes textiles,” Rev. Mex. Ing. Qum., vol. 12, no. 3, pp. 585–594, 2013.
E. GilPavas, I. Dobrosz-Gómez, and M. í. Gómez-García, “Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment,” J. Environ. Manage., vol. 191, pp. 189–197, 2017.
M. Lapertot, S. Ebrahimi, S. Dazio, A. Rubinelli, and C. Pulgarin, “Photo-Fenton and biological integrated process for degradation of a mixture of pesticides,” J. Photochem. Photobiol. A Chem., vol. 186, no. 1, pp. 34–40, 2007.
C. Amor et al., “Mature landfill leachate treatment by coagulation / flocculation combined with Fenton and solar photo-Fenton processes,” J. Hazard. Mater., vol. 286, pp. 261–268, 2015.
A. A. Ruiz, “La biofiltración, una alternativa para la potabilización del agua.,” Lasallista Investig., vol. 1, no. 2, p. 6, 2004.
M. A. Garzón-Zúñiga, “La biofiltración sobre cama de turba, un tratamiento eficiente para diferentes tipos de agua residual industrial,” Ing. Sanit. y Ambient., vol. 52, no. 777, pp. 76–82, 2005.
M. A. Zulfikar, H. Setiyanto, D. Wahyuningrum, and R. R. Mukti, “Peat water treatment using chitosan-silica composite as an adsorbent,” Int. J. Environ. Res., vol. 8, no. 3, pp. 687–710, 2014.
F. Hemmati, R. Norouzbeigi, F. Sarbisheh, and H. Shayesteh, “Malachite green removal using modified sphagnum peat moss as a low-cost biosorbent: Kinetic, equilibrium and thermodynamic studies,” J. Taiwan Inst. Chem. Eng., vol. 0, pp. 1–8, 2015.
S. J. Allen, G. Mckay, and J. F. Porter, “Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems,” J. Colloid Interface Sci., vol. 280, no. 2, pp. 322–333, 2004.
D. Couillard, “The use of peat in wastewater treatment,” Water Res., vol. 28, no. 6, pp. 1261–1274, 1994.
M. A. Garzón-Zúñiga, G. Buelna, and G. E. Moeller-Chávez, “La biofiltración sobre materiales orgánicos, nueva tecnología sustentable para tratar agua residual en pequeñas comunidades e industrias,” Tecnol. y Ciencias del Agua, vol. 3, no. 3, pp. 153–161, 2012.
J. D. Owen and A. C. Sanz, “Evaluación de turba para el tratamiento de aguas residuales,” Buenos Aires, 2001.
Y. Kalmykova and A. Strí¶mvall, “Peat filter performance under changing environmental conditions,” J. Hazard. ”…, vol. 166, pp. 389–393, 2009.
Q. Sun and L. Yang, “The adsorption of basic dyes from aqueous solution on modified peat – resin particle,” Water Res., vol. 37, no. 821, pp. 1535–1544, 2003.
A. Hauser, “Los depósitos de turba en Chile y sus perspectivas de utilización,” Rev. Geológica Chile, vol. 23, no. 2, pp. 217–229, 1996.
V. K. C. Lee, J. F. Porter, and G. McKay, “Modified design model for the adsorption of dye onto peat,” Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C, vol. 79, no. 1, pp. 21–26, 2001.
P. N. Lens, P. M. Vochten, L. Speleers, and W. H. Verstraete, “Direct treatment of domestic wastewater by percolation over peat, bark and woodchips,” Water Res., vol. 28, no. 1, pp. 17–26, 1994.
A. Srinivasan and T. Viraraghavan, “Decolorization of dye wastewaters by biosorbents: A review,” J. Environ. Manage., vol. 91, no. 10, pp. 1915–1929, 2010.
ASTM C33/C33M-16, Standard Specification for Concrete Aggregates. 2016.
S. Aguinaga, “Manual De Procedimientos Analiticos Para Aguas Y Efluentes,” p. 174, 1996.
A. Zapata, T. Velegraki, J. A. Sánchez-Pérez, D. Mantzavinos, M. I. Maldonado, and S. Malato, “Solar photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability,” Appl. Catal. B Environ., vol. 88, no. 3–4, pp. 448–454, 2009.
R. He, B. H. Tian, Q. Q. Zhang, and H. T. Zhang, “Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process,” Waste Manag., vol. 38, no. 1, pp. 232–239, 2015.
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.