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ABSTRACT 

This paper presents a novel approach for planning and operating of multiple Micro-

grids in restructured power systems environment and electricity market. Power 

quality indicators, voltage profiles, and power losses are considered as effective 

parameters for supplying the network active and reactive powers. Also, the 

necessary financial incentives are introduced in this paper from the economic point 

of view for these resources, and demand response programs are also used. in which 

variables are programmable distributed generators and interruptible loads based on 

demand response programs. In the proposed model, the operator implements a 

market with the locational pricing and considering the power losses based on 

domestic market implementation and upstream market modeling in the role of a 

dual player. In this way, active and reactive power markets will implement 

simultaneously in order to maximize social welfare. Subsequently, the Beta and 

Weibull Probability Density Function (PDF) methods are used for modeling the 

uncertainties in power generation. Also, the Locational Marginal Pricing method 

(LMP) is used to determine the prices in the system and the intelligent GA-PSO 

hybrid algorithm is used for optimization of this problem. Finally, the results are 

compared with the results obtained from other algorithms. 

Keywords: multiple microgrids; load response; reactive power market; renewable 

distributed generation resources; GA-PSO algorithm. 
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1. INTRODUCTION 

A power microgrid is a set of loads and distributed generation (DG) resources that has 

the ability to connect to the upward network and operate autonomously in island mode. 

In island mode, the power microgrid is separated from the upstream network and can 

supply its existing loads. Some of the advantages of operating in the Islanding mode are 

increased reliability, increased power quality and more flexibility. This has encouraged 

companies producing electricity in recent years to increase the quality of their supplied 

electricity by operating distribution networks in Islanding mode (during fault occurrence 

or predefined outage). Since it’s no good disconnecting DG resources during fault 

occurrence or predefined outage, the microgrid operation is expected to be an appropriate 

option. 

In this paper an algorithm is proposed for planning of multiple microgrids in exchange 

with the energy market considering reactive power. 

In [1], a new method has been proposed to measure Battery Energy Storage System 

(BESS) by considering dynamic demand response (DR) and using Particle Swarm 

Optimization (PSO). In that article, the optimal size of BESS has been calculated based 

on frequency control of microgrid and through involving DR by PSO. The results have 

showed that compared to the optimal size of BESS based on Simulated Annealing (SA) 

with DR, the optimal size of BESS based on PSO with DR can lead to increased efficiency 

and create a rapid, faultless, immune and stable dynamic system. By the way, the 

proposed method has determined the effects of the costs related to BESS between modern 

and common BESS technologies. Then, the investment, operation and maintenance costs 

of BESS have been studied and compared to each other in terms of economy and 

microgrids’ performances. In [2], load shift techniques have been used by dividing loads 

into two groups, high priority loads (HPL) and low priority loads (LPL). The HPLs must 

be supplied regardless of generation situation but the LPLs can be supplied when the 

renewable resources are available. That article introduces a new design and optimization 

to size the individual systems of the hybrid energy--photovoltaic(PV)/ wind/ diesel/ 

battery—techno-economically based on the smart-grid theory to generate energy with 

minimum cost and maximum reliability. Finally, an accurate method has been proposed 
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to merge five sites of Saudi Arabia and ten wind turbines from different makers to 

maximize generated energy and minimize the cost of generated kWh.  

In reference [3], a new strategy is provided for users of a low voltage Micro-grid for 

distributed and automated management of power on demand side. The main procedures 

for implementing this method are: a) Modeling energy consumption scheduling of time-

shiftable loads belonging to a specific user is as a player of a two-player game with 

incomplete information in which the user himself/herself plays against the opponent that 

collects other users of the Micro-grid; (b) It is assumed that each user has statistical 

information about his or her behavior and the opponent, so he/she can select the behaviors 

that maximize his/her expected output. 

In [4], the authors focused on two main objectives: (1) understanding the concept of how 

to assess the risks in smart grids, and (2) providing a more comprehensive view of risk in 

smart grids. In this paper, a CBA methodology was proposed and used as a basis for 

developing an elaborate list of criteria that includes dependency, interdependence, and 

flexibility, as well as accepted risk factors (ie, probabilities and consequences). This 

aggregation of factors can be used in a general analysis of smart grids. The CBA 

requirements and further research paths are also outlined in this article for realizing better 

capabilities in the smart grid. 

In [5], three models for prediction are briefly presented: the regression model of support 

vector with three-day training, Support Vector Regression with optimized parameters by 

Genetic Algorithm (SVRGA) and the same model using Particle Swarm Optimization 

(SVRPSO). Unlike existing models, these models have a precise prediction by optimizing 

the regular structure risk function. These models use hourly load data from three previous 

days to predict the hourly load of the next day. This paper presents a comparative study 

between GA and PSO on the hyperparameter tuning of the SVR model. 

In [6], the authors show that auxiliary services can manage energy by using renewable 

energy, stored energy and local generation (on-site generation) to reduce the expensive 

and high-cost power generation in the main network and satisfy the surplus demand of 

smart grid customers. A fractional integral is used to calculate the area under the curve, 

in order to compute the power consumption at a scheduled time equal to 15 minutes per 
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hour, and the determination of demand levels. Also, the dynamic game model is used to 

dispatch the available distributed generation in order to satisfy customers' surplus 

demand. The results show that for a compilation program, the proposed method can 

reduce demand from the main grid and increase the flexibility of the system to activate 

the ready-to-use distributed generation. 

In [7], a new Demand-Side Management (DSM) plan is suggested for automated DC 

Micro-grid in future buildings. The proposed control algorithm shifts lagging loads from 

non-sunny hours to sunshine hours and reduces building demand during non-sunny hours. 

This reduces battery charging/discharging cycles. By doing so, the power drop in the 

battery is reduced and the system's performance is upgraded. The proposed scheme 

reduces the size of the PV plant, storage cost, and system cost. 

In [8], the planning of a microgrid has been done in the island and connected-to-the-

network modes in presence of renewable DG resources including solar, wind, and storage 

systems. In that article, the presence of battery storage systems leads to the reduced 

disadvantages of the uncertainties related to power generation by DG resources and 

increased benefits of microgrid. Furthermore, the grey wolf search algorithm has been 

employed in that article.  

In [9], a new method has been proposed for corrective voltage control (CVC) of power 

systems in the presence of uncertainties related to wind power generation and demand 

levels. In that article, the uncertainties related to wind power generation and demand 

levels are managed using a scenario-based method. A feature of the proposed method is 

use of demand-side resources as an effective control tool to reduce control costs. Active 

and reactive re-dispatching of generation units, mandatory load reduction and also 

demand-side voluntary participation (demand response) have been used as control tools 

in the proposed CVC method. Meanwhile, the CVC has been simulated as a multi-

objective optimization problem. The considered objectives ensure desired loading margin 

while minimizing control costs. The problem has been resolved using constraint ε method 

and fuzzy satisfaction method has been used to select the best solution from the optimum 

set of Pareto responses. In [10], a modern multi-objective model (SMP-OPF) has been 

presented to optimize the design of a power grid that is connected to a wind farm by a 
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huge HVDC converter. The used wind turbines in the study are Dual Fed Induction 

Generators (DFIGs) and their DFIG curves are used to obtain the accurate amount of the 

generated power of these turbines. In addition, the uncertainties caused by wind turbines’ 

generation have been considered in the study. The problem has been tested on 118-bus 

IEEE test system to show the performance of the proposed model to obtain the optimum 

plan of active and reactive powers for heat and wind generation units. Finally, the 

obtained results show the ability of the proposed SMP-OPF model to determine the 

optimum performance of power systems.  

In [11], a long-term simulation model has been employed to study the long-term dynamics 

of two specific policies which are used by policy-makers now. The first policy deals with 

correcting side effects by controlling CO_2 price in a level equal to the social cost of 

CO_2 emissions. Authors in [12] have studied if there had been a relationship between 

demand market balance and renewable energy resources in day-ahead electricity market 

of Italy from 2010 to 2011—the study has been done using individual prediction-based 

bids. Authors in [13] have focused on demand response and smart measurement for small 

and medium consumers to see what kind of market signals should be sent to demand 

managers in order to consider the demand response as a competitive activity.  

Authors in [14] have focused on studying and determining the effect of different demand 

response models’ costs on unit commitment and power distribution in day-ahead market. 

In the study, unit commitment model has been employed with mixed integer 

programming in the context of market operations. In [15], a new method has been 

presented for the determination, analysis and comparative assessment of the restrictions 

that today impede high demand response implementation. Authors in [16] have discussed 

the available strategies of effective risk management for retail electricity providers (REP) 

to work on the uncertainties of day-ahead market; they have also discussed how to prevent 

financial losses in the market.  

In [17], the linear and nonlinear models of incentive-based demand response (IBDR) and 

price-based demand response (PBDR) has been presented and implemented in several 

real power markets. In the study, the results of implementing DR plans in electricity 

markets have been studied for different levels of reflexive load participation in DR plans. 
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Authors in [18] studied the variations of the pre-registered load patterns of Korean 

commercial and industrial electricity consumers and their effects on daily-event loads 

during pricing experiment of critical peak in winter 2013.  

In [19], real-time electricity markets have been divided into three groups: group 1 uses 

node prices implemented by optimal power flow that defray energy prices every 5 

minutes; Group 2 uses regional prices with time resolution of 5 minutes. In [20], the 

business models have been studied and analysed in different parts of electricity market 

for energy efficiency (EE) and DR providers. The analysis covers three characteristics: 

demand-side management (DSM) exchange characteristic, renewable energy correlation 

and characteristic of DSM’s load control.  

The effect of demand elasticity on electricity market has been studied in [21]. The 

extended model of Kornovet has been extracted from classic model of Kornovet by taking 

into account the demand elasticity. The results of simulations show that the demand 

elasticity can effectively impress market outputs namely market clearing price (MCP), 

load payment and the output and individual benefit of production companies. In [22], the 

platforms of game theory have been presented for demand response in electricity market 

and consumer levels. First the interaction between demand response aggregator (DRA) 

and electric generators has been modelled as Stackelberg game in which DRA (as game 

leader) create demand reduction tenders and generators (as followers) compete to 

maximize their benefit based on reduced demand.  

In [23], we study the effect of dynamic demand response on future smart grid abstractly 

to analyse the trade-off between efficiency and risk under different architectures of 

market. First we study the performance of system under participatory and non-

participatory architectures of market. A set of robust mixed integer linear programming 

problems must be resolved in [24]. Instead of using predicted prices as inputs, the upper 

and lower limits of pool prices are considered to model uncertainty.  

In this article, the planning of multiple microgrids is done by using GA-PSO algorithm 

in the presence of renewable DG resources and load response in a competitive electricity 

market environment. In the model proposed in the research it is assumed that DG units 

are able to participate in wholesale market and their location is accomplished based on 
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the margin local price of electricity. The amount of subscribers’ payments in each bus 

that is equal to the product of local marginal price and power amount of that bus is used 

as an index to rank selected points for installation of DG units. 

In the following of this paper, at first, the modeling of loads and distributed generation 

resources and the process of market clearing is presented and then, the general model of 

the system for planning of multiple microgrids in exchange with the energy market and 

considering reactive power and related constraints are presented. After that, the 

optimization algorithm and numerical studies are expressed and in the final section, the 

conclusions of the study are presented. 

1.1. Modelling loads and DGs 

The appropriate modelling of DGs and loads is completely necessary to design optimal 

microgrids in a distribution system. For this purpose, a combination of two conventional 

DG technologies namely PV modules and wind turbines has been studied in this study. 

According to the unpredictable nature of PV and wind renewable resources, the solar 

radiation and wind speed in each hour of day have been modelled with Beta and Weibull 

probability density functions (PDFs) respectively—the experimental data has been used 

for this purpose [25]. In this design, each day is divided into 24 parts so that each part has 

a PDF for solar radiation and wind speed. In addition, load has been modelled hourly 

using IEEE-RTS. To embed output power of PV modules and wind turbines as multi-

state variables in formulations, the continuous PDFs of theirs are divided into different 

states. The number of selected states impresses the accuracy and complication of 

formulation. In this research, the output power of PV modules and wind turbines has been 

divided into four parts for each hour of day that each of them (the parts) has different 

probability. Assuming the states of solar radiation and PV modules are independent of 

each other, the probability related to each combination of loads and generation is 

determined by combining the two probabilities. So there will be 16 (4*4), 384 (16*24) 

and 140,160 (365*384) states with different probabilities for each hour, day and year 

respectively that include different timescales (day and night) with different penetration 

levels of DGs.  
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The operator of this domestic market is the operator of multiple microgrid that in addition 

to immune operation of grid, handle the planning with the aim of satisfying all actors. 

Here it is assumed that the domestic market of multiple microgrid is an hour-ahead market 

that the generation resources of multiple microgrid declare their power generation offers 

in a set of generation steps with determined prices in each hour. In addition, RTP method 

is used for load response that is a real-time load response method.  

If the multiple microgrid to be considered as connected to upstream network (in most 

hours), then the operator of microgrid must perform a plan to find optimal combination 

by considering the capacity and price of connection to upstream network and necessity of 

supplying uninterruptable loads. The economic exchange process of this domestic market 

can be modelled as a centralized market with uniform local pricing [21] in which DGs 

price in ascending order and uninterruptable loads in descending order based on their 

needs. Market clearing price is achieved at the intersection of the highest price of 

generators and that of consumers. 

 

 

Figure 1. Market clearing process. 

 

2. PROBLEM MODELLING 

2.1. Microgrid planning in exchange with energy market and reactive power 

In this section, the planning of multiple microgrid is modelled for exchange with market 

energy and reactive power. The objective function can be defined as maximization of a 
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social welfare function resulted from simultaneous purchase and sale of active and 

reactive power to domestic markets and exchange with upstream network and other 

microgrids in a power quality improvement reserve.  

It is assumed that microgrid should profit (if it can) from reactive power sale to—or 

exchange that with—upstream network or other microgrids while covering its reactive 

power costs. In this article, the objective function maximizes profit and power quality. 

Our objective function is modelled by considering the reactive power generation cost of 

DG units as well as the sale price of load for reactive power and exchange with upstream 

network. 
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Where: 

𝐹𝑆𝑆𝑛: the base value of social welfare function; 
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𝑃𝑖,𝑡
𝐷𝑈: the active power of 𝑖𝑡ℎ programmable unit at hour t (kW); 

𝑃𝑖,𝑡
𝑁𝑈: the active power of 𝑖𝑡ℎ unprogrammable unit at hour t (kW); 

𝑞𝑖,𝑡
𝐷𝑈: the reactive power of 𝑖𝑡ℎ programmable unit at hour t (kVAR); 

𝑞𝑖,𝑡
𝑁𝑈: the reactive power of 𝑖𝑡ℎ unprogrammable unit at hour t (kVAR); 

𝑃𝑖,𝑡
𝐶𝐿: the interrupted power of interruptible load 𝑖 at hour t (kW); 

𝑃𝑡: the exchanged power with upstream network and other microgrids at hour t (kW); 

𝜏𝐴,𝑡: the energy price in upstream market at hour t (currency/kWh); 

τ𝐵,𝑡: the energy price in microgrid at hour t (currency/kWh); 

𝐶𝑖
𝐷𝑈: the cost function of programmable units (currency/h); 

𝐶𝑖
𝑁𝑈: the cost function of unprogrammable units (currency/h); 

𝐶𝑖
𝐶𝐿: the interruption cost of interruptible loads (currency/h); 

𝑆𝐶𝑖 : the start cost of DG units (currency/h); 

𝐼𝑖,𝑡: binary variable that shows off/on state of unit at hour t; 

𝐶𝑄,𝑖
𝑁𝑈: the cost function of unprogrammable units’ reactive power (currency/h); 

𝐶𝑄,𝑖
𝐷𝑈: the cost function of programmable units’ reactive power (currency/h); 

𝜋𝐵𝑄,𝑖: reactive power price in microgrid at hour t (currency/kVarh); 

𝜋𝐵𝑄,𝑖: reactive power price in upstream market at hour t (currency/kVarh). 

In above objective function the first and second terms show the income obtained from 

selling the energy that resulted from unprogrammable and programmable DG units 

respectively. The third and fourth terms show the power generation cost of DG units. The 

fifth term shows the cost of load interruption for interruptible loads, in fact it is the money 

that must be paid to loads in order to interrupt part of their load. The sixth term shows the 

income or cost resulted from exchanging power with upstream network. 

𝑃𝑡 and 𝑄𝑡 are the active and reactive power of microgrid (respectively) that are exchanged 

with upstream network or other microgrids and are defined as a variable in a range of 

positive (in case of buying from upstream network) and negative (in case of selling to 

upstream network). Finally, the last term shows the start cost of DG units.  
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The cost function of each DG unit can be estimated from active power output by a second-

order or first-order function. Usually, the cost function of programmable units is 

estimated by a second-order function and that of unprogrammable units (that their major 

cost is repair and maintenance cost) is estimated by a first-order function. 𝛼, 𝛽 and 𝛾 are 

the coefficients of DG units’ cost function. 

2

( ) . .DU DU DU DU

i i i iC P P P      (5) 

( ) .NU NU NU

i i iC P P    (6) 

Also, the interruption cost of interruptible loads can be defined as a polynomial function 

[60]. In this problem, this cost is represented as follows: 

2
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The cost function of reactive power for programmable DG resources is modelled by a 

second-order function. 
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Also, the cost function of reactive power for unprogrammable DG resources is defined as 

a linear function in a certain power factor. 
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This objective function attempts to maximize the profit resulted from exchange of active 

and reactive powers by taking into account the constraints and the dependence between 

active and reactive powers. According to the structure of objective function, the 

simultaneous optimization of active and reactive powers is necessary. 

Also, the objective function of power quality is defined as follows (that is the revers of 

the proportion of voltage difference between buses to reference voltage). 

.
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This part of objective function shows the voltage distortion of different buses from their 

reference value. In fact, it shows their voltage drop in network and our main goal in this 

part of function is minimization of this voltage drop. 
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𝐾𝑝.𝑣: the base voltage drop of profile; 

𝐾𝑏𝑝𝑟𝑜𝑓: the maximum possible voltage drop in system; 

𝐾𝑛.𝑝.𝑣: the normalized value of voltage profile; 

𝑉𝑟𝑒𝑓: the reference voltage; 

𝑉𝑖: the voltage of bus 𝑖. 

2.2. The general objective function 

The general objective function that is equal to the total normalized values of all objective 

functions by considering the weight factor of each function and is determined as follows: 

1 SS. 2 PQ.Minimize * *total n nF K F K F   (12) 

Where 𝐾1 is the weight factor related to the social welfare function and 𝐾2 is the weight 

factor related to the power quality function. 

2.3. Problem constraints 

The constraints of problem are modelled as follows (for 24-hour operation): 

2.3.1 The constraint of generation and load balance 

In every hour, the amounts of generation and load for the active power of microgrid must 

be equal. In the following equations, 𝑞𝑖,𝑡
𝑁𝑈 and 𝑞𝑖,𝑡

𝐷𝑈 are the reactive power of 

programmable and unprogrammable units respectively. In addition, 𝐿𝑜𝑎𝑑𝑡 and 𝐿𝑜𝑠𝑠𝑡 are 

the active load of microgrid and the losses of active power respectively. 
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2.3.2 The constraint of minimum required reserve 
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The operator of microgrid should guarantee a required reserve margin in each hour by 

considering on units and exchange with network. 𝑅𝑒𝑠𝑡 is the required reserve of 

microgrid, as an example, 𝑅𝑒𝑠𝑡 is considered as 10 percentage of microgrid load. 

𝑃𝑖,𝑀𝑎𝑥 
𝐷𝑈 , 𝑃𝑖,𝑀𝑎𝑥

𝑁𝑈 , and 𝑃𝑀𝑎𝑥,𝑡 are maximum generated power of DG units, maximum 

interrupted load of interruptible loads, and maximum exchange with upstream network 

respectively. 
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(14) 

The reserve for reactive power is defined similarly that is presented in following equation: 

 , , , , ,

1

. ( ) Re
DUN

DU DU

Maxi t i t i t Max t t Q t

i

Q Q I Q Q s


     
(15) 

2.3.3 The constraints of units’ generation limits 

maxdgdg PP   (16) 

maxdg dgQ Q  (17) 

2.3.4 The constraints of minimum active and pause time of micro-turbine units 

In these equations 𝑇𝑖,𝑡
𝑜𝑛 𝑎𝑛𝑑 𝑇𝑖,𝑡

𝑜𝑓𝑓
 are continuous on time and off time of 𝑖𝑡ℎ unit until 

hour 𝑡 respectively and 𝑀𝑈𝑖 𝑎𝑛𝑑 𝑀𝐷𝑖 are minimum active and pause time of 𝑖𝑡ℎ unit. 
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2.3.5 The constraints of the increasing and decreasing slopes of micro-turbine units 

In the following relations, RUPi
DU and RDNi

DUare increasing and decreasing slopes of unit 
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, 1 ,
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2.3.6 The constraints of the maximum interruptible load and exchangeable power with 

the upstream network 

𝑃𝑀𝑎𝑥,𝑖,𝑡
𝐷𝑈  is the maximum interruptible power of 𝑖𝑡ℎ load. Microgrid contracts with 

interruptible loads to interrupt their loads (if needed) in certain hours up to declared 

maximum by load. Also, 𝑃𝑀𝑎𝑥,𝑡 is maximum exchanged power with upstream network 

that must be considered to plan generation in each hour. 

CL

tiMax

CL

ti PP ,,0   (27) 

tMaxt PP ,  (28) 

,t Max tQ Q  (29) 

  

2.3.7 Security constraints of microgrid 

The microgrid’s operator must make sure that the microgrid is secure during planning. 

For this purpose, he/she considers the constraints of lines’ maximum powers and buses’ 

voltage limits. In the following equations, 𝑉𝑖
𝑀𝑎𝑥 𝑎𝑛𝑑 𝑉𝑖

𝑀𝑖𝑛 are upper and lower limits of 

allowed voltage for buses. In addition, 𝑆𝑖,𝑗,𝑡 is the transformed power through each line 

connected to bus 𝑖 and 𝑆𝑖,𝑗
𝑀𝑎𝑥 is the allowed loading limit of line. 

Max

iti

Min

i VVV  ,  (30) 

Max

jitji SS  ,  (31) 



 

A Novel Technique for Multiple Microgrids Planning by Considering Demand 

Response Programming and Social Welfare Enhancement in Power Market 

Revista Publicando, 5 No 15. (2). 2018, 435-467. ISSN 1390-9304 

 

449 

Received 03/04/2018 

Approved 10/06/2018 

2.3.8 The constraint of minimum power factor for connection to upstream network 

It is assumed that the network’s operator has agreed with microgrid’s operator to satisfy 

the constraint of load connection with a certain power factor when the microgrid is 

drawing active and reactive power, in other words when it has load role for upstream 

network.  

So the exchanged power with upstream network can be limited by following constraint 

in which 𝜇 is minimum allowed power factor for connection to upstream network and 

cos 𝜑𝑡 is the power factor of connecting to upstream network when the microgrid has 

load role. 

0,  ttt QPifCOS   

 

(32) 

3. GA-PSO ALGORITHM 

The implementation process of algorithm GA-PSO is as follows: 

- First, we select a population randomly that are GA components and PSO particles 

actually.  

- The fitness of components is calculated. 

- Half the population that have higher fitness are selected and PSO operations are 

applied to them. However this factor is named Breeding Ratio (ψ) this factor determines 

that what percentage of the population are placed under PSO operations. If the total 

population be 𝑁, then the algorithm selects ψ. 𝑁 particles with higher fitness to create 

enhanced elites by applying PSO calculations to them. This way, PSO particles are 

adapted with problem’s conditions and their environment more and more that this process 

is similar to the growth of creatures in nature. 

- The enhanced elites are transformed to the next generation directly and the rest of 

population are created by applying mutation and crossover operations to them. 

The following figure represents all of the above-mentioned steps. 
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Figure 2. The implementation steps of GA-PSO algorithm [7]. 

4. NUMERICAL STUDIES 

The under-study system is a low-voltage network that contains three microgrids and 

different types of domestic, commercial and industrial loads. In this network, different 

types of DGs namely 7 wind turbines, 3 micro-turbines, 8 photovoltaic cells and 3 reactive 

power source have been used. In addition, some of the required load is supplied by 

upstream network that is electrical energy market here. 

In this system, the multi-objective optimal operation of microgrid is done in the presence 

of demand response. It is assumed that all the DGs work in power factor 1.0 and don’t 

generate or absorb any reactive power. The cost of purchased energy from wind and solar 

units is equal to their operation cost and is considered zero.  

It is assumed that the micro-turbines work with natural gas and efficiency of 

8.8 𝑘𝑊ℎ/𝑚3. Fuel price is considered as 0.8 $/𝐿 [18]. The efficiency of micro-turbine 

to consume natural gas is assumed equal to 26%.  

For units consuming fuel, this cost is uniformly distributed on their working hours. It is 

assumed that MT work in 90% of the year (or in 1884 hours). For standard-based DGs, 
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the annual cost is calculated based on their generations. Therefore, each generated kWh 

by those resources must be assessed against installation and depreciation costs.  

In this article, we consider some different states to achieve the best possible solution on 

the sample network so that the problem of planning microgrid (from the perspective of 

the electricity market) is resolved to achieve maximum social welfare and power 

quality—as mentioned earlier. 

In Fig. 4 the load curves of each supplier resource and whole microgrid have been 

represented for a normal work day of the year. The total required energy for this day is 

2616 𝑘𝑊ℎ. It is assumed that the power factors of all loads are equal to 0.85 (lagging). 

The resistances and reactances of lines are listed in Table 1. In this section, the steps of 

problem simulation are done using software MATLAB and algorithm PSO-TVAC and 

the results are discussed. 

 

 

Figure 3. Studied micro grid. 
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Figure 4. the common load curve for each supplier of studied network. 

The values of lines’ 𝑅 𝑎𝑛𝑑 𝑋 are calculated by base power of 100 𝑘𝑉𝐴 and base voltage 

of 400 𝑉. It should be noted that start cost is only considered for fuel-consuming units. 

To calculate the start cost of 𝑀𝑇, the fuel cost in start time at full capacity and half 

efficiency is inserted to calculations. 

Table 1. The studied network lines data. 

Origin 

bus 

Destination 

bus 

𝑹(𝒑𝒖) 𝑿(𝒑𝒖) Origin 

bus 

Destination 

bus 

𝑹(𝒑𝒖) 𝑿(𝒑𝒖) 

2 1 10.152 0.1756i 15 8 15.228 0.2633i 

19 1 11.421 0.1975i 16 10 5.076 0.0878i 

30 1 15.228 0.2633i 17 11 10.152 0.1756i 

3 2 13.959 0.2414i 18 12 8.883 0.1536i 

4 2 9.8982 0.1712i 20 19 12.4362 0.2151i 

5 3 9.5175 0.1646i 21 19 8.6292 0.1492i 

6 3 6.345 0.1097i 22 20 10.2789 0.1778i 

7 4 11.421 0.1975i 23 22 9.0099 0.1558i 
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8 4 15.228 0.2633i 24 22 3.2994 0.0571i 

9 5 16.497 0.2853i 25 22 6.2181 0.1075i 

10 5 6.345 0.1097i 26 24 19.035 0.3292i 

11 6 11.421 0.1975i 27 25 15.228 0.2633i 

12 6 8.883 0.1536i 28 26 5.076 0.0878i 

13 7 6.345 0.1097i 29 27 12.0555 0.2085i 

14 8 12.69 0.2195i 

 

Table 2 shows the maximum and minimum functional limits of DG resources. The 

minimum technical performance of 𝑀𝑇 has been obtained from the experimental results 

of [13] and hence its performance will be sustainable in continuous operation. In addition, 

its maximum start time is slightly more than 2 minutes that is clearly less than selected 

15-minute time-step [13]. 

Table 3 shows the factors of assumed cost for DG resources in $ and for each 𝑘𝑊ℎ and 

ℎ. In this table, start costs are also listed, if possible. Furthermore, to simplify the analysis, 

it is assumed that all the units only work in electric mode and there is no need to heat in 

studied period. As it is observed, in addition to obtained DGs, a micro-turbine has been 

added to the system in the first system. 

Table 2. Installed DG resources. 

Unit 

number 

Minimum 

power (kW) 

Maximum 

power (kW) 

Unit 

number 

Minimum 

power (kW) 

Maximum 

power (kW) 

MT1 6 20 PV6 0 2 

MT2 6 20 PV7 0 3 

MT3 6 30 PV8 0 1.5 

QG1 5 20 WT1 0 1.5 

QG2 4 15 WT 2 0 1.5 

QG3 5 20 WT 3 0 1 

PV1 0 1 WT 4 0 1.4 

PV2 0 2.5 WT 5 0 1 
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PV3 0 1.5 WT 6 0 3 

PV4 0 1.5 WT 7 0 2.5 

PV5 0 1 

 

As it can be seen in the table, the capacity of solar and wind resources are the previous 

capacities and two microgrid has been added to network in this state and has been 

installed in different sections of the system. Also, the solar panels that are mostly rooftop 

have been used here.  

Table 3. The costs of DG units. 

Unit type 𝒃𝒊($/𝒌𝑾𝒉) 𝒄𝒊($/𝒉) Start cost in $ 

MT1 4.37 85.06 9 

MT2 2.84 255.18 9 

MT3 2.84 225.18 9 

QG1 1.68 70.03 7 

QG2 1.43 54.23 7 

QG3 1.68 70.03 7 

PV1 54.84 0 0 

PV2 54.84 0 0 

PV3 54.84 0 0 

PV4 54.84 0 0 

PV5 54.84 0 0 

PV6 54.84 0 0 

PV7 54.84 0 0 

PV8 54.84 0 0 

WT1 10.63 0 0 

WT 2 10.63 0 0 

WT 3 10.63 0 0 

WT 4 10.63 0 0 
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WT 5 10.63 0 0 

WT 6 10.63 0 0 

WT 7 10.63 0 0 

 

The proposed prices by each of the available generating resources in the microgrids, and 

the power exchange between them and the grid are summarized in Table (4). 

Table 4. The proposed prices by each of the available generating resources in the 

microgrids, and the power exchange between them and the grid 

 

Unit type 

Min 

cost 

($/kwh) 

Max 

cost 

($/kwh) 

MT 0.14 0.16 

QG 0.16 0.17 

PV 0.08 0.11 

WT 0.03 0.09 

Buy from a micro-grid and sell it to another micro-grid 0.07 0.17 

Buy from a micro-grid and sell it to grid 0.05 0.115 

Buy from grid and sell it to micro-grid 0.16 0.18 

a. Scenario 1 

In this scenario that is the base state of the experiment, we operate system without 

considering the internal resources of microgrid and only by external resources. In this 

case, the total power requirement of system is supplied through global grid. In this 

condition, the different parts of study’s objective function are as table 5. 

Table 5. The results related to the first scenario. 

The active power exchanged with global grid (kw) 2969.83 

The reactive power exchanged with global grid (kvar) 1781.898 
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Power losses (pu) 0.0021037 

The value of system voltage profile function 113.577 

Consumer surplus impurity ($) 228.0746 

System operation cost ($) 0 

The normalized value of social welfare function 0.526143 

The normalized value of power quality function 0.9490 

The value objective function  0.73762 

 

In this case, the total required power of system is supplied by grid and this causes the grid 

to supply its loads with low power quality thus the value of social welfare function is not 

so good.  

b. Scenario 2 

In this scenario, the system is operated by considering multiple microgrids and renewable 

distributed generation resources like wind and solar resources which are the internal 

resources of microgrids. In this case, wind and solar resources and global grid supply 

system loads in parallel. Furthermore, we use LMP method that was presented in previous 

section to determine grid costs. In this case, the different parts of objective function are 

as table 6. 

Table 6. The results related to the second scenario. 

 MG 1 MG 2 MG 3 

The power generated by solar resources (kw) 681.7472 745.0852 0 

The power generated by wind resources (kw) 1961.472 1621.330 0 

The power generated by micro-turbines (kw) 0 0 0 

The power generated by reactive resources (kvar) 0 0 0 

The power related to interruptible loads (kw) 0 0 0 

The active power exchanged with global grid (kw) 2209.152 

The reactive power exchanged with global grid (kvar) 1781.898 
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Power losses (pu) 0.0039827 

The value of system voltage profile function 117.8977 

Consumer surplus impurity ($) 343.615 

System operation cost ($) 0 

The normalized value of welfare function 0.174614 

The normalized value of power quality 0.9811 

Objective function value 0.577859 

 

How to operate the system at different hours of the day and by different resources and 

global grid is represented in figure 5. As it can be seen, the operation cost of system and 

thus the value of social welfare function and power quality of system have been improved. 

The voltage profile at peak hours has been showed in figure 6. As it can be seen the 

system voltage is in allowed range in this case. 
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Figure 5. How to operate system resources at different hours of the day and by different 

resources in the second scenario. 
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Figure 6. Voltage profile at peak hours (20, 21, and 22 O’clock respectively) in the 

second scenario. 

c. Scenario 3 

In this scenario, the system is operated by considering multiple microgrids, renewable 

distributed generation resources like wind and solar resources, and programmable 

distributed resources like micro-turbines and reactive power generation resources. In this 

case, reactive power market is created and microgrids can share their surplus reactive 

power with other microgrids. In addition, different pricing processes are performed under 

different scenarios. In this case, the different parts of the objective function are as table 

7. 

Table 7. The results related to the third scenario. 

 MG 1 MG 2 MG 3 

The power generated by solar resources (kw) 423.788 487.1268 0 

The power generated by wind resources (kw) 1210.386 1058.015 0 

The power generated by micro-turbines (kw) 1227.019 1079.515 0 

The power generated by reactive resources (kvar) 313427 139411 0 

The power related to interruptible loads (kw) 0 0 0 
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The active power exchanged with global grid (kw) 1900.924 

The reactive power exchanged with global grid (kvar) 1329.06 

Power losses (pu) 0.002104466 

The value of system voltage profile function 11.2458 

Consumer surplus impurity ($) 541.0567 

System operation cost ($) 404.977 

The normalized value of welfare function 0.440919 

The normalized value of power quality 0.52123 

Objective function value 0.481074 

 

How to operate the system at different hours of the day, and by different resources and 

global grid is represented in figure 7. As it can be seen, the operation cost of system and 

thus the value of social welfare function and power quality of system have been improved. 

The voltage profile at peak hours has been showed in figure 8. As it can be seen the 

system voltage is in allowed range in this case. 

 

 

Figure 7. how to operate system resources at different hours of the day and by different 

resources in the third scenario. 
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Figure 8. voltage profile at peak hours (20, 21, and 22 O’clock respectively) in the third 

scenario. 

d. Scenario 4 

In this scenario, we operate the system by considering multiple microgrids and all 

conditions of scenario 3. The possibility of load response by RTP method is considered 

too. In this article, the existing loads of system can participate in load response up to 20% 

of existing residential loads. In this case, the loads participating in load response are 

interruptible loads which are the non-sensitive loads of microgrids 1 and 2. In this case, 

the different parts of studied objective function are as table 8.  

Table 8. The results related to the fourth scenario. 

 MG 1 MG 2 MG 3 

The power generated by solar resources (kw) 423.788 487.1268 0 

The power generated by wind resources (kw) 1210.386 1058.015 0 

The power generated by micro-turbines (kw) 1217.019 1069.843 0 

The power generated by reactive resources (kvar) 296274 135215 0 

The power related to interruptible loads (kw) 76.6883 0 0 

The active power exchanged with global grid (kw) 1890.204 
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The reactive power exchanged with global grid (kvar) 1350.409 

Power losses (pu) 0.00212738 

The value of system voltage profile function 11.32028 

Consumer surplus impurity ($) 541.4378 

System operation cost ($) 401.5753 

The normalized value of welfare function 0.42899 

The normalized value of power quality 0.52255 

Objective function value 0.47577 

 

How to operate the system at different hours of the day, and by different resources and 

global grid is represented in figure 9. As it can be seen, the operation cost of system and 

thus the value of social welfare function and power quality of system have been improved. 

The voltage profile at peak hours has been showed in figure 10. As it can be seen the 

system voltage is in allowed range in this case. 

 

 

Figure 9. how to operate system resources at different hours of the day and by different 

resources in the fourth scenario. 
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Figure 10. voltage profile at peak hours (20, 21, and 22 O’clock respectively) in the 

fourth scenario. 

The results of system for different optimization scenarios are compared in figure 11. 

 

 

Figure 11. comparing the results of objective function’s different parts for different 

scenarios. 

In this step, we compare the results obtained from this algorithm (for scenario 4) with 

results of other algorithms including PSO, GA and GSO algorithms to study the 

performance of proposed model and algorithm. In this case, it can be seen that the best 

result is related to GA-PSO algorithm. The related results ae listed in table 9. 

 



 

A Novel Technique for Multiple Microgrids Planning by Considering Demand 

Response Programming and Social Welfare Enhancement in Power Market 

Revista Publicando, 5 No 15. (2). 2018, 435-467. ISSN 1390-9304 

 

464 

Received 03/04/2018 

Approved 10/06/2018 

Table 9. The results related to the fourth scenario. 

 GA PSO GSO GAPSO 

Power losses (kw) 0.00184522 0.00179793 0.001735693 0.00212738 

The value of system voltage 

profile function 
10.6127 10.18305 9.791055 11.32028 

Consumer surplus impurity 

($) 
485.4219 465.6671 500.1991 541.4378 

System operation cost ($) 404.1621 379.0942 414.6404 401.5753 

The normalized value of 

welfare function 
0.73837 0.693057 0.70127 0.42899 

The normalized value of 

power quality 
0.3526 0.333357 0.321477 0.52255 

Objective function value 0.545488 0.5132075 0.5113751 0.47577 

5. CONCLUSION 

In this research, the planning of multiple microgrids was done in a competitive market of 

active and reactive power in which the microgrids use their own internal programmable 

resources of active and reactive power and renewable resources in parallel to supply their 

required power. In process presented in this research, microgrids can supply their required 

power in coordination with other microgrids and global grid and according to offered 

prices by each of the internal resources, microgrids and global grid. In this article, the 

problem was implemented on a system with three microgrids that contain different usages 

including domestic, residential and commercial loads. Finally, it was observed that the 

best possible response is obtained when the system operates by internal resources and 

global grid in parallel and in presence of load response. Furthermore, GAPSO algorithm 

provided the best possible results due to its large search space and high convergence speed 

compared to other algorithms. 
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