

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

1108

Artículo recibido: 01-11-2017

Aprobación definitiva: 07 -12-2017

A Study Of Euclidean K-Ary Gcd Algorithm

Nikolai Andreevich Antonov1, Shamil Talgatovich Ishmukhametov1,

Al Halidi Arkan M1, Mariia Evgenevna Maiorova2

1. Kazan Federal University, Shamil.Ishmukhametov@kpfu.ru

2. Knrtu-Kai, Fsbei

ABSTRACT

The problem of computing the greatest common divisor GCD of natural numbers is one

of the most common problems that is solved in modern computational mathematics and

its applications. At the moment, many algorithms are known to solve this problem, but

every day the requirements for the effectiveness of such algorithms become more

stringent. As a result, there is a need to create new algorithms that are more efficient in

time and number of the operations performed. Besides, they must allow the possibility

of their transformation into modern programming languages while maintaining the

efficiency of the algorithm.

This article presents an analysis of the realization features and the results of testing the

speed of three GCD computation algorithms: the classical Euclidean algorithm, the

Sorenson k-ary algorithm, and the approximating k-ary algorithm developed by the

second of the authors in MicrosoftVisualStudio in C #. Qualitative and quantitative data

on the effectiveness of these algorithms in terms of time and number of the steps within

the main cycle are have been obtained.

The concluding part of the article contains the analysis of the results obtained, their

representation in the diagrams, and gives the recommendations on the choice of the

parameters of the methods.

Keywords:GCD of natural numbers, Euclidian GCD algorithm, k-ary GCD algorithm,

approximating k-ary algorithm.

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1109

1. INTRODUCTION

As a rule, modern cryptographic systems work with long numbers and provide a

procedure for calculating their greatest common divisor GCD (Ishmukhametov S.T.

2011), (Ishmukhametov S., Mubarakov B., Mochalov A. 2015). The most common of

these procedures is the classical Euclidean algorithm. However, other algorithms are

also known, the overall goal of which was to reduce the complexity of GCD

computation, and to reduce the search time.

One of the most promising algorithms is the k-ary algorithm of the GCD search,

published in the 1990s by Jonathan Sorenson (Sorenson J. 2004,Sorenson J.

1990,Sorenson J. 1994). In comparison with the classical Euclidean algorithm, this

algorithm makes it possible to significantly reduce the complexity of calculations with a

careful choice of the k parameter. Sorenson and other scientists subsequently proposed

several variantsto improve and modify the k-ary algorithm ((Weber K. 1995,Jebelean T.

1993,Wang X., Pan V. 2003)).

One of them is the approximating k-ary algorithm proposed by S. T.Ishmukhametov

(Ishmukhametov S.T. 2016).

The aim of this paper is to realize and study the three mentioned algorithms for

computing GCD. The next three parts deal with the classical Euclidean algorithm, the

original version of k-ary algorithm and its modification - an approximating k-ary

algorithm. For each of the algorithms, a theoretical justification is given, an estimate of

the complexity is indicated, and a realization of the algorithm using the programming

language C # is performed. Next, the results of testing each of the algorithms by run-

time usingthe numbers of different lengths are presented. The final part of the work

compares the algorithms according to the efficiency of the time of work and the number

of steps within the main cycle.

2. METHODS

The tables belowpresentthe results of testing of the classical Euclidean algorithm, the

Sorenson k-ary algorithm and the approximating k-ary algorithm. All algorithms were

realizedusing the C # programming language in MicrosoftVisualStudio 2010.

In the tables compiled from the results of testing the original and approximating k-ary

algorithms the “arity” of the algorithm is reservedvertically, and horizontally - the

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1110

length of the numbers in decimal positions. Each cell of the table is divided into two

parts. At the top of the cell, the average search time of the GCD algorithm of a given

“arity” on one of a thousand pairs of randomly generated numbers of a given lengthis

indicated. By analogy, at the bottom of the cell thereis shown the number of iterations

of the main loopdone by the algorithm of a given“arity” also by one of a thousand pairs

of randomly generated numbers of a given length. It should be noted that the classical

Euclidean algorithm has no “arity”, so the results of its testing are tabulated, in the

upper line of which, horizontally, the length of the numbers in decimal places is

postponed, and below, the corresponding results are given for the average working time

of the algorithm realizationby thousand pairs randomly generated numbers and the

average number of steps made within the main loop.

3. RESULTS

Table 1. ClassicalEuclidianAlgorithm

D

(numbers’ length in

decimal digits)

10 25 50 100 250 500 1000

Working time (µs) 4,5 16 35 97 313 760 2650

Average number of

iterations (iter)
19 48 96 194 485 969 1940

Table 2.SorensonК-aryAlgorithm

К\D 10 25 50 100 250 500 1000

16 µs 17 70 175 450 1001 5763 20744

iter 17 70 94 200 483 959 1900

64 µs 12 61 133 367 918 4641 15437

iter 15 40 80 160 403 806 1615

256 µs 8 48 120 315 1161 3701 13583

iter 13 32 66 133 331 664 1331

421 мк 15 41 111 257 1018 3243 11367

iter 13 31 65 129 329 661 1328

853 µs 10 43 93 244 969 3047 10493

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1111

iter 13 30 65 131 327 655 1313

1307 µs 14 49 103 69 894 2947 10267

iter 12 28 58 116 291 583 1167

1801 µs 10 48 101 104 1041 2832 1026

iter 9 23 47 99 240 481 959

Table 3.ApproximatingK-aryAlgorithm

К\D 10 25 50 100 250 500 1000

16 µs 60 189 479 1152 4257 12946 44579

iter 8 20 41 82 207 414 829

64 µs 63 194 475 1108 3824 11306 37393

iter 6 16 33 67 167 335 671

256 µs 62 201 517 1046 3566 10290 32783

iter 5 13 27 55 139 279 557

422 µs 62 212 552 1201 3871 10237 33000

iter 5 13 27 55 138 277 551

852 µs 56 281 591 1175 3767 10165 32460

iter 5 13 26 53 133 266 534

1506 µs 61 207 501 1155 3655 9848 30785

iter 4 12 24 49 123 247 494

3026 µs 78 243 524 1195 3897 10078 29698

iter 4 11 22 45 114 230 461

4. DISCUSSION

CLASSICAL EUCLIDIANALGORITHM. The natural numbersA and B, A> Bare

transmittedto the input of the algorithm. The classical Euclidean GCD search algorithm

is based on the following recurrence equation:

𝐺𝐶𝐷(𝐴, 𝐵) = 𝐺𝐶𝐷(𝐵, 𝐴 𝑚𝑜𝑑 𝐵).

The algorithm is realizedsuccessively, called iterations, in the course of each of which

the remainder is calculated 𝐶 = 𝐴𝑚𝑜𝑑𝐵, a transition to a new pair (𝐵, 𝐶)takes

placeandthe

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1112

calculation continues with the new pair. The calculation stops when the second

argument of the pair is equal to 0, then the first argument is the sought GCD. The very

algorithm can be written in the C # as follows:

publicBigInteger Method(BigInteger number1, BigInteger number2)

{ if (number1 <= 1 || number2 <= 1)

return 1;

BigInteger R;

if (number2 > number1) { R = number1;

number1 = number2;

number2 = R; }

while (number2 != 0)

{ R = number1 % number2;

number1 = number2;

number2 = R; }

returnnumber1;

}

Estimating the complexity of this algorithm, we note that for every two iterations of the

cycle, the dividend decreases at least twice. This means that the number of iterations is

𝑂(𝑛), where𝑛 is the length of the input numbers. The worst estimate is achieved by the

neighbor numbers of the Fibonacci series, and the average number of iterations is

estimated by the value (Dixon (DixonJ. 1970)):

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∼
12

𝜋2
log2 𝐵

The operation of calculating the remainder of 𝐴𝑚𝑜𝑑𝐵can be performed within the time

𝑂(𝑛 log2 𝑛), so that the overall performance of the algorithm is estimated by

𝑂(𝑛2 log2 𝑛.

K-ARY ALGORITHMOF SORENSON. First, we consider a binary algorithm for

calculating GCD for a pair of natural numbers. The input data of this algorithm are odd

natural numbers. We designate them by 𝑢, 𝑣. The binary algorithm can be represented

as follows:

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1113

while(u!= 0) and (v!=0) do:

if (u is even) u:=u/2

else if (v is even) v:=v/2

else t:= abs(u - v)/2;

if (u > v) then u:=t else v:=t;

if (u = = 0) then t:=v else t:=u;

output(t);

Generalizing this algorithm, we will obtain the k-ary GCD algorithm. The main idea of

the iteration of the k-ary algorithm is to search for a given pair of numbers(𝐴, 𝐵)of the

integers 𝑥, 𝑦for a small fixed k:

0 < 𝑥 < √𝑘 -√𝑘 < 𝑦 < √𝑘,

such that the identity

𝑢𝑥 + 𝑣𝑦 ≡ 0 𝑚𝑜𝑑 𝑘.

isperformed

Then, at the step of the algorithm, we can pass from the pair(𝑢, 𝑣) to the new pair

(𝑣, 𝑤), where 𝑤 = (𝑢𝑥 + 𝑣𝑦)/𝑘(it is also necessary to reduce wby the divisorsk).

Sorenson in the article (3) proposed to perform k-ary algorithm in four stages: the stage

of precomputations, the first “pilot” division, the main part, the second “pilot” division.

Themainpartofthealgorithmis performed in the following way :

while(v!= 0){

if (gcd(u,k) > 1) u=u/gcd(u,k);

else (if gcd(v,k) > 1) v=v/ gcd(v,k);

else

find integers x, y, ux + vy ≡0 (modk);

w= | ux+ vy|/k;

if (v > w){u=v ;v=w ;} else u= w;

}

return u ;

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1114

When trying to realize the k-ary algorithm, it becomes clear that the way to choose

integers x and y in many ways affects its performance. According to the Sorenson

theorem, the coefficients x and y can be chosen 0 < |𝑥| + |𝑦| ≤ 2√𝑘.

For the maximum performance of the algorithm, it is also advantageous to choose the

numberxbeing small and positive, the numbery being sufficiently large negative.

The stage of preliminary calculations: if the base of algorithm k is already chosen, then

for all natural numbers less than k, the algorithm involves calculating their greatest

commonness with the number k of the divisor and searching for the inverse element by

the modul k (the corresponding tables will be designatedwith the letters G, I).

In addition, onecompilesa special table for rapid calculation of the numbers x, y and a

table for holding some small common divisors of the numbers 𝑢 and𝑣, which are cut off

at the pilot division stage. All these calculations do not depend on the numbers 𝑢 and

𝑣transferred to the algorithm, and therefore can be performed in advance and only once.

The first “trial” division: as it was mentioned earlier, at this stage all common dividers

of the given numbers 𝑢and 𝑣are firstly cut off. Later they are stored in a separate table,

up to the stage of the second test division. Also at this stage, those numbers being the

dividers of one of the numbers𝑢and 𝑣 and not the divisors of the other are cut off. Such

divisors do not participate in the formation of GCD, so one does not need to store them.

Then one executes the main cycle during which the number 𝑀is calculated. This

number is not necessarily equal to the desired GCD, but is equal to their multiple, that

is, it can contain extraneous factors. To exclude them, the second test division is

performed.

The second “trial” division: this stage of the algorithm is the final one and uses the

result obtained after the realization of the main part of the algorithm. To get rid of

extraneous factors, divide 𝑀by all small divisors in a pre-compiled table, and then𝑀 is

multiplied by the result of the first test division. As a result, we obtain GCD of the given

numbers 𝑢 and 𝑣.

The most significant part of the algorithm is in the main loop, which represents the main

stage of the algorithm. In C #, it can be written as follows:

privatevoidMainLoop()

{

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1115

int u1, v1;

int a, b, x;

BigInteger t;

while ((u != 0) && (v != 0))

{ u1 = (int)(u % k); v1 = (int)(v % k);

if (G(u1) > 1) u /= G(u1);

else

{ if (G(v1) > 1) v /= G(v1);

else

{ x = (u1 * I(v1)) % k;

if (x < 0) x += k;

a = A(x);

b = ((-1) * a * x) % k;

t = BigInteger.Abs(a * u + b * v) / k;

if (u > v) u = t;

else v = t; }}}

}

Variables G, I, A denote the arrays the dimension of which is equal to the base (“arity”)

of the algorithm “k”. These arrays realize the tables of preliminary calculations.

Let usaddtherealizationofthestagesofthe first and second trial divisions and obtain the

function that realizes the k-ary algorithm:

// First trial division

PrivatevoidTrialDivision1()

{

BigIntegerg = 1;

for (inti =1; i<P.Length; i++)

while (u % P(i) == 0 &&v % P(i) == 0)

{ u /= P(i);v /= P(i);g *= P(i); }

}

//Second trial division

PrivatevoidTrialDivision2()

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1116

{

BigInteger t;

if (v == 0) t = u;

else t = v;

for (inti = 0; i<P.Length; i++)

while (t % P(i) == 0)

t /= P(i);

g = t * g;

}

// k-ary algorithm

PublicBigInteger Method(BigInteger number1, BigInteger number2)

{

if (number1 <= 1 || number2 <= 1) return 1;

TrialDivision1();

MainLoop();

TrialDivision2();

returnGetGCD();

}

The complexity of the k-ary algorithm for the numbers 𝑢and𝑣 with length 𝑛bits in the

optimal case of the choice of the parameter k is equal to Sorenson’s estimate

𝑂(𝑛2/logk).

APPROXIMATING K-ARY ALGORITHM. Let there be given natural numbers 𝐴 >

𝐵 > 0. For simplicity, suppose that 𝐴, 𝐵 are odd. We choose a parameter k to be equal

to the power of two 𝑘 = 2𝑠. It is assumed that 𝐴, 𝐵are sufficiently long, therefore, to

simplify further calculations, we find

𝑎 = 𝐴𝑚𝑜𝑑𝑘, 𝑏 = 𝐵𝑚𝑜𝑑𝑘.

Now, by analogy with Sorenson’s k-ary algorithm, it is required to find such numbers 𝑥

and y that

𝐴𝑥 + 𝐵𝑦 ≡ 0 𝑚𝑜𝑑𝑘,

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1117

.and then calculate𝐶 = (𝐴𝑥 + 𝐵𝑦)/𝑘, replace (𝐴, 𝐵)with the new pair (𝐵, 𝐶) and pass

on to the next iteration.

The approximating k-ary algorithm offers a new way of calculating the numbers 𝑥, 𝑦,

using the approximate value of r, calculated by the formula

𝑟 = ⌈
𝑟′ − 𝑞

𝑘
⌉,

where 𝑟’ = 𝐴/𝐵, 𝑞 = 𝐴𝐵−1𝑚𝑜𝑑 𝑘, ⌈𝑠⌉ – integer parts.

First, an approximate value 𝑟′ = 𝐴/𝐵is calculated to 1/𝑘. Then the accuracy of

computing r is1/𝑘2. Then approximate raccurate within3/2𝑘2by the fraction of Farey

((Hardy G. H., Wright E. M.1959), chapter 2). The Farey fraction 𝑚/𝑛is a proper

fraction with a numerator and denominator smaller than 𝑘. Then, the difference between

𝑚/𝑛and 𝑟 does not exceed 5/2𝑘2.

The most significant part of the algorithm is the calculation of the approximating

fraction 𝑚/𝑛. The required values of the coefficients x, y are chosen by m and n as

follows: x = n, y is chosen so as to minimize the sum𝐴𝑥 + 𝐵𝑦. Obviously, y must be a

negative number, then the terms 𝐴𝑥and 𝐵𝑦 have different signs and mutually cancelled.

The peculiarity of this algorithm is that it operates not only with the very numbers, but

also with the length of the binary representation of each of the numbers. To apply the

approximation to the above relation, it is necessary that the numbers 𝐴, 𝐵 be sufficiently

approximate in length. Otherwise, the usual iteration of the classical Euclidean

algorithm is performed, which, in the absence of approximation, speeds up the

algorithm (the same substitution also accelerates the Sorenson algorithm).

Let the input data of the algorithm be odd numbers 𝐴, 𝐵, the basis of the algorithm 𝑘 =

2𝑠, and the lengths of the numbers 𝐴, 𝐵, 𝑘 in the binary representation are L1, L2 and L,

respectively. Then the realization of one step of the approximating k-ary algorithm can

have the following form:

PublicBigInteger Step(BigInteger A, BigInteger B)

{

// Item 1

int d = L1 - L2;

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1118

BigInteger q;

if (d >= 2 * L){

q = BigInteger.Remainder(A * ReverseElement(B,

BigInteger.Pow(2, d)), BigInteger.Pow(2, d));

C = (A - q * B) / BigInteger.Pow(2, d);

if (C == 0) C = B;

while (C % 2 == 0) C /= 2;

returnBigInteger.Abs(C); }

// Item 2

int a = (int)(A % k);

int b = (int)(B % k);

q = (int)((a * ReverseElement(b, k)) % k);

// Item 3

int t = L2 - L;

if (t <= 0){ B = BigInteger.GreatestCommonDivisor(A, B); return B; }

BigInteger A1 = BigInteger.Divide(A, BigInteger.Pow(2, t));

BigInteger B1 = BigInteger.Divide(B, BigInteger.Pow(2, t));

// Item 4

BigInteger n0 = B1 * k;

BigInteger m1 = A1 - ((int)q) * B1;

if (m1 < 0) { q -= k; m1 = (int)(A1 - ((int)q) * B1); }

// Item 5

BigInteger m0 = m1 % n0;

BigInteger s1 = (m1 - m0) / n0;

// Item 6

BigInteger x = 1;

BigInteger y = -(((int)q) + s1 * k);

BigInteger m = 1, n = 1;

bool flag = false;

if (m0 * k >= n0){ FareyApproximation(m0, n0, out m, out n); flag = true; }

// Item 7

if (flag){ x = n;BigInteger s = -(s1 * x + m); y = s * k - ((int)q) * x; }

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1119

BigInteger A2 = (A - a) / k;

BigInteger B2 = (B - b) / k;

BigInteger c = (a * x + b * y) / k;

C = A2 * x + B2 * y + c;

// Item 8

if (C == 0) C = B;

else { while (C % 2 == 0) C = C / 2; }

returnBigInteger.Abs(C); }

According to the theorem on the asymptotic complexity of the approximating k-ary

algorithm, the number of iterations in each stage is estimated by𝑂(𝑛/ log2 𝑘), where n

is the length of the original numbers in bits. The complexity of the whole algorithm is

estimated by

𝑂(𝑛2/𝐿 + 𝑛𝐿),

where𝐿 – binary length𝑘.

5. SUMMARY

Analyzing the results of the original and approximating K-ary algorithms, one can note

that the optimal value of their “arity” of k, i.e. the value at which the algorithm is

realizedby the numbers of a given length in the shortest time varies with the length of

the given numbers. This observation is more clearly illustrated in the diagrams below:

Diagram 1.The K-ary Sorensen Algorithm

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1120

Diagram 2.Approximating K-ary algorithm

When investigating the dependence of the number of steps performed by the algorithm

in the search for GCD, on the length of the given numbers, we can conclude that when

searching for the GCD of two given numbers, the number of steps made by the

approximating k-ary algorithm is the smallest. Following this indicator is k-arny

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1121

algorithm by Sorenson, and in this case, the “arities” of the algorithms are considered to

be equal.The classical Euclidean algorithm takes the most number of steps for the GCD

search. The difference in this parameter is noticeable even with a small base of the k

(“arity”). Let’s visualize this fact in the diagrams, choosing “arity” of the original and

approximating algorithms equal to 64. We can note one more fact connected with the

change in the algorithm “arity” in calculating GCD numbers of the given length. With

increasing “arity” of the original or approximating algorithm, the GCD search is

performed in fewer steps.

Below, the following is designated in diagrams 3,4,5:

К – the classical Euclidean algorithm,

С – Sorensen’s k-ary algorithm (in brackets “arity”)

А – Approximating k-ary algorithm (in brackets “arity”)

Diagram 3. Number of steps within the main cycle

Diagram 4. 64-aryand 408-ary algorithms of Sorenson

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1122

Diagram 5. 64-aryand 408-ary approximating algorithms

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1123

However, this circumstance is not areason for always taking the maximum possible

basis to calculate GCD by means of the k-ary algorithm. From a direct analysis of the

tables based on the results of k-ary algorithms, it follows that an increase in the basis of

the algorithm, without detriment to its effectiveness on time, can occur only up to some

boundary (Diagrams 6 and 7)

Diagram 6.

Diagram 7.

6. CONCLUSIONS

Taking into account the peculiarities of the original and approximating k-ary

algorithms, as well as the classical Euclidean algorithm, it is possible to propose using

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1124

them sequentially, at that, first, several iterations of the approximating k-ary algorithm

are applied, and the result is input to the k-ary algorithm of Sorenson or the classical

Euclidean algorithm. After applying the approximating algorithm in the first stage, the

length of the pair of obtained numbers with the equivalent GCD is already substantially

smaller than the length of the original numbers. After a few iterations, a pair of

relatively small length numbers will be obtained, and now the GCD calculation can be

completed with the help of two other algorithms that work much faster than the

approximating algorithm начислахwith small numbers.

7. ACKNOWLEDGEMENTS

The work is performed according to the Russian Government Program of Competitive

Growth of Kazan Federal University.

8. REFERENCES

DixonJ. ThenumberofstepsintheEuclidean algorithm // Journal of Number Theory. vol.

2, pp. 414–422, 1970.

Hardy G. H., Wright E. M. An introduction to the theory of numbers, 4th ed. (Oxford,

Calrendon Press), 1959.

Ishmukhametov S.T. An approximating k-ary GCD Algorithm, Lobachevskii Journal of

Mathematics, vol. 37, Issue 6, pp. 723-728, 2016.

Ishmukhametov S.T. Factorization methods of natural numbers // Kazan Federal

University, Kazan (rus), 2011.

Ishmukhametov S., Mubarakov B., Mochalov A. Euclidian algorithm for recurrent

sequences, Applied Discrete Mathematics and Heuristic Algorithms //

International Scientific Journal. – Samara, vol. 1(2). – pp. 57–62, 2015.

Sorenson J. An analysis of the generalized binary GCD algorithm / J. Sorenson, A. van

derPoorten, A. Stein (Eds.), High Primes and Misdemeanors// Lectures in

Honour of Hugh Cowie Williams. – Banff, Alberta, Canada. – AMS Math.

Review, vol. 41,pp. 254–258, 2004.

A Study Of Euclidean K-Ary Gcd Algorithm

Revista Publicando, 4 No 13. (1). 2017, 1108-1125. ISSN 1390-9304

Artículo recibido: 01-11-2017
Aprobación definitiva: 07 -12-2017

1125

Sorenson J. The k-ary GCD algorithm //Computer Sciences Technical Report. – 1990.

Sorenson J. Two fast GCD Algorithms // Journal of Algorithms, vol. 16(1), pp 110–144,

1994.

Weber K. The accelerated integer GCD algorithm, ACM Trans.Math.Software, 21, №1,

pp. 1–12, 1995.

Jebelean T. A Generalization of the Binary GCD Algorithm, Proc.

OfIntern.Symp.onSymb.and Algebra, Comp.(ISSAC’93), pp. 111-116, 1993.

Wang X., Pan V. Acceleration of Euclidian Algorithm and rational number

reconstruction. Siam J. Comp,vol.32,№2, pp. 548-556, 2003.

